Numerical Simulation of a Radial Difusor Airflow Considering Different Turbulence Models and Computational Parameters

نویسندگان

  • Alysson Kennerly Colaciti
  • Luis Miguel Valdés López
  • Luben Cabezas Gómez
چکیده

In the present work are presented results from numerical simulations performed with the ANSYS-CFX code. It is studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behaviors such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valves configurations, influencing in a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard (1987). The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Rein – Reynolds number at the diffuser inlet). Where used the Baseline (BSL) k-ω; the k-ε; the RNG k-ε; and the Shear Stress Transport (SST) k-ω turbulence models. The performed computational results analysis and comparison with experimental data show that the choice of the turbulence model, as well as, the choice of the other computational conditions, play an important rule on results physical quality and accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

Modeling Airflow in Urban Form against Sand Accumulation: a Case of Saltation in the Town of Timimoun in Southern Algeria

In our present research, we focus on the modeling of airflow related to natural disasters, such assand accumulation, with urban form studies. The objective is to find which urban form can promote sand passing andreduce as much as possible stagnation of sand in the building area (streets, alleys, etc.). The urban form design will bediscussed through the simulation of airflow by using Computation...

متن کامل

Experimental study and application of computational fluid dynamics on the prediction of air velocity and temperature in a ventilated chamber

The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an optimal design of the air conditioning system. In this study, a chamber was first constructed ...

متن کامل

A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude

At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...

متن کامل

Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow

One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006